
J
H
E
P
0
7
(
2
0
0
7
)
0
4
3

Published by Institute of Physics Publishing for SISSA

Received: May 30, 2007

Accepted: July 10, 2007

Published: July 16, 2007

A natural renormalizable model of metastable SUSY

breaking

Felix Brümmer
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1. Introduction

Recently the idea of metastable dynamical supersymmetry breaking has been revived,

starting with the work of Intriligator, Seiberg and Shih (ISS) [1]. ISS showed that fairly

simple theories can have metastable vacua with dynamically broken SUSY. Their prototype

example is SU(Nc) SQCD with Nf massive quark flavours, where 3Nc/2 > Nf > Nc and

the quark masses are much smaller than the strong-coupling scale Λ of the gauge theory.

As already mentioned in [1] and proposed in a broader context in [2], such a small mass

parameter in a model of metastable SUSY breaking can be dynamically generated by

coupling the theory to an additional gauge sector via higher-dimensional operators. For

the ISS model (or rather a modified version [3] including also gauge-mediation messenger

fields) this mechanism was worked out in [4]: Denoting the field strength superfield of the

auxiliary sector by W ′
α, a coupling of the quarks and antiquarks q, q̃ of the form

L ⊃

∫

d2θ
tr qq̃

M2
tr W ′

αW ′α + h.c. (1.1)

leads to quark masses m ∼ Λ′3/M2 after gaugino condensation. Here Λ′ is the strong-

coupling scale of the auxiliary gauge theory, and M is a high scale at which the theory

must be UV-completed, e.g. the Planck scale if one imagines the model to be embedded in

a theory of quantum gravity. In this model, m ≪ Λ can be easily accomplished, and thus

the ISS analysis applies. Several particle physics models with metastable SUSY breaking

(see, for instance, [5]) use similar mechanisms for generating small scales dynamically from

higher-dimensional operators.

In this paper we propose to go one step further, by constructing a model which does not

rely on unknown physics at some UV completion scale. We generate a small ISS quark mass

scale dynamically from the coupling to an auxiliary sector, but using only renormalizable

operators. Our model does not have any dimensionful parameters — all scales are generated
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by dimensional transmutation. It consists of two SQCD sectors, the ISS sector and the

auxiliary sector, with their matter fields coupled to an additional singlet S. S obtains

a vacuum expectation value from strong gauge dynamics in the auxiliary sector, which

generates an effective mass term for the ISS sector quarks from a superpotential term

W ⊃ λS tr qq̃. (1.2)

To obtain sufficiently small quark masses m ≪ Λ, the dimensionless coupling λ must be

taken to be moderately small (for the metastable vacuum to survive much longer than

the age of the universe, λ ∼ 10−2 is sufficient in a realistic setup). However, we stress

that this tuning is rather mild and concerns a dimensionless coupling only. The hierarchy

between the fundamental scale and the SUSY breaking scale is still mainly generated by

nonperturbative gauge dynamics, which after all is the central idea behind dynamical SUSY

breaking.

This paper is organized as follows: in section 2, we give a brief review of metastable

SUSY breaking within the ISS model. In section 3, we show how small quark masses can

be generated by coupling the ISS model to an auxiliary sector. We also give an explicit

example to show how this scenario can be realized with plausible choices of parameters.

We conclude in section 4. In the appendix we show that the superpotential of our auxiliary

sector is constrained by the symmetries and holomorphy to take the form we have assumed.

2. The ISS model

We will now briefly review the analysis of ISS [1]. Consider N = 1 rigidly supersymmetric

QCD with Nc colours and Nf flavours of massive quarks and antiquarks qi, q̃i (i = 1 . . . Nf ),

where 3Nc/2 > Nf > Nc. Let us take the quark masses to be equal for simplicity and

denote them by m. Assume also that m ≪ Λ, where Λ is the strong-coupling scale of the

gauge theory. The theory is asymptotically free. It has a dual description [6] on scales

much lower than Λ in terms of an IR free SU(Nf −Nc) gauge theory with Nf dual quarks

and antiquarks ϕi, ϕ̃i and N2
f uncharged mesons Φi

j. In the dual theory, near the origin

of field space the Kähler potential is smooth and hence can be taken to be canonical to

leading order (up to normalization factors of order one, which we drop). The infrared

superpotential is, up to O(1) coefficients,

W = ϕ̃c
iΦ

i
jϕ

j
c −mΛΦi

i +

(

detΦ

Λ3Nc−2Nf

)
1

Nf−Nc

(c = 1 . . . Nf −Nc, i, j = 1 . . . Nf ). (2.1)

At small field values, we can neglect the last term in W because of the Λ-suppression; then

the F -terms of Φ are1

FΦi
j

= ϕ̃c
iϕ

j
c − mΛδj

i . (2.2)

1By a common abuse of notation, we use the same symbols for the lowest components of chiral superfields

as for the respective superfields themselves.
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They cannot all vanish because ϕ̃c
iϕ

j
c has rank Nf − Nc, whereas δj

i has rank Nf . It turns

out that there is a SUSY breaking local minimum, the ISS vacuum, at

Φ = 0, (ϕ̃c
i ) = (ϕj

c)
T =

(

m1Nf−Nc

0

)

. (2.3)

Here 1Nf−Nc denotes the (Nf − Nc) × (Nf − Nc) unit matrix. At tree-level, the potential

still has several flat directions. Those that correspond to Goldstone directions from spon-

taneously broken global symmetries are unaffected by quantum corrections. The others

are lifted by the one-loop Coleman-Weinberg potential, such that the ISS vacuum is indeed

locally stable. In addition to the ISS vacuum there are supersymmetric vacua, which are

found by taking into account also the determinant term in (2.1). However, they are well

separated in field space from the ISS vacuum if m/Λ is sufficiently small, hence the ISS

vacuum can be very long-lived. More precisely, in [1] the bounce action for overcoming the

tunneling barrier and decaying into the proper vacuum was estimated to be

Sbounce ≈

(

Λ

m

)

6Nc−4Nf

Nc

, (2.4)

which shows that for m ≪ Λ the lifetime of the ISS vacuum is parametrically large.

3. Generating small quark masses

Let us first describe what will eventually become the auxiliary sector of our model. Take

SU(N ′
c) SQCD with N ′

f flavours of massless quarks and antiquarks Q, Q̃, where N ′
c > N ′

f .

Couple this theory to an additional singlet S with tree-level superpotential

Wtree = λ′S tr QQ̃ − κS3. (3.1)

In the quantum theory, an additional contribution to the superpotential is generated non-

perturbatively [7], which becomes relevant in the infrared:

Wnp = a

(

Λ′3N ′

c−N ′

f

detQQ̃

)
1

N′
c−N′

f

. (3.2)

Here Λ′ is the strong-coupling scale of the gauge theory, and a is a renormalization-scheme

dependent number of order one. In [8] it was shown that by holomorphy and symmetry

the exact low-energy effective superpotential is W = Wtree +Wnp, in a range of parameters

where S is the only light degree of freedom and the quarks are integrated out. In the

appendix, we show that W = Wtree + Wnp is indeed exact even in the general case.

To analyze the IR behaviour of the theory, we introduce the meson fields

M i
j =

1

Λ′
QiQ̃j (3.3)
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(with a trace over colour indices implied), normalized by the 1/Λ′ factor to have canon-

ical dimension. In terms of the mesons and the singlet, the exact low-energy effective

superpotential is then

Weff = λ′Λ′S tr M − κS3 + a

(

Λ′3N ′

c−2N ′

f

det M

)
1

N′
c−N′

f

. (3.4)

The equations for supersymmetric vacua,

λ′Λ′ tr M − 3κS2 = 0, λ′Λ′S δi
j −

a

N ′
c − N ′

f

(

Λ′3N ′

c−2N ′

f

det M

)
1

N′
c−N′

f (

M−1
)i

j
= 0, (3.5)

are solved by

S = bΛ′ e
2πin

3N′
c−N′

f ,

M = cΛ′ e
4πin

3N′
c−N′

f 1Nf
,

(0 ≤ n < 3N ′
c − N ′

f ), (3.6)

where b and c are numerical constants given by

b =





(

N ′
f

3κ

)N ′

c

(λ′)N
′

f

(

a

N ′
c − N ′

f

)N ′

c−N ′

f





1

3N′
c−N′

f

, c =





3κ

(λ′)3N ′
f

(

a

N ′
c − N ′

f

)2




N′

c−N′

f

3N′
c−N′

f

.

(3.7)

For simplicity, in the following we choose the couplings λ′ and κ such that b = c = 1.

We now couple this model to an ISS sector, with the ISS quark mass coming from the

expectation value of S. The combined superpotential in the UV is

W = −λS tr qq̃ + λ′ S tr QQ̃ − κS3. (3.8)

We have deliberately omitted all possible operators with dimensionful couplings here: No

scales are introduced by hand. The absence of linear and quadratic terms in W can

be further justified by imposing an obvious discrete Z3 symmetry acting on the chiral

superfields, which will be spontaneously broken by nonperturbative effects.

Let us assume that λ ≪ 1, such that also λΛ ≪ Λ′ and λΛ′ ≪ Λ (this can of course

be achieved by, for instance, choosing the numbers of colours and flavours and the gauge

couplings at the renormalization scale such that Λ ≈ Λ′, and then setting λ ≪ 1).

The resulting model has various effective descriptions at different energy scales. In

the far UV the appropriate superpotential is (3.8). The ISS and auxiliary sector then have

effective descriptions at scales below their respective strong coupling scales Λ and Λ′ (either

of which can be the higher one): At scales around Λ we should pass to the Seiberg dual of

the q sector, replacing

−λS tr qq̃ → −λΛS tr Φ + tr ϕ̃Φϕ +

(

det Φ

Λ3Nc−2Nf

)
1

Nf−Nc

. (3.9)

Here we anticipate that S, which is a dynamical field up to now, will eventually acquire

an expectation value, such that the λS tr qq̃ term will become an ISS quark mass term.
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At scales below Λ′ the Q sector together with S can be described by the exact superpo-

tential (3.4), with the coupling to the q sector viewed as a small perturbation. We should

therefore replace

λ′ S tr QQ̃ − κS3 → λ′Λ′S tr M − κS3 + a

(

Λ′3N ′

c−2N ′

f

detM

)
1

N′
c−N′

f

. (3.10)

At scales much below Λ′, M and S are massive and should be integrated out. Taking for

definiteness the phases in (3.6) to vanish, we obtain

〈S〉 = Λ′

[

1 + O

(

λ2Λ2

(Λ′)2

)]

. (3.11)

The correction terms of higher order in λΛ/Λ′ are small by assumption.

In the IR, the only light degrees of freedom remaining are now the ISS mesons and dual

quarks, whose interactions at low energies are governed by the superpotential (dropping

again, as in section 2, the irrelevant last term in (3.9))

W = −λ〈S〉Λ tr Φ + tr ϕ̃Φϕ. (3.12)

This is just the infrared superpotential of the ISS model from section 2 with quark mass

m = λΛ′ + O
(

λ3Λ2/Λ′
)

, which is much smaller than Λ as required.

Let us illustrate this discussion with a numerical example: Take Nc = 5, Nf = 6,

N ′
c = 4, N ′

f = 3. Choose the gauge couplings at the Planck scale MP = 1019 GeV as

α(MP ) ≡
g2(MP )

4π
=

1

42
, α′(MP ) ≡

g′2(MP )

4π
=

1

45
. (3.13)

This gives Λ ≈ 1.8 · 106 GeV and Λ′ ≈ 2.3 · 105 GeV. Choosing λ = 10−2, we have λΛ/Λ′ ≈

8 · 10−2 and m/Λ = λΛ′/Λ ≈ 10−3, so both these parameters are indeed small. A very

crude estimate of the lifetime of the vacuum can be done with the bounce action

Sbounce ≈

(

Λ

m

)
6

5

≈ 3 · 103. (3.14)

With the decay width per unit volume suppressed as

Γ

V

1

m4
∼ e−Sbounce, (3.15)

the minimal bounce action for our universe to survive for ≈ 1010 years in a metastable

state is only roughly Smin ≈ 400, so our vacuum is sufficiently long-lived.

The SUSY breaking scale is at about 6 · 104 GeV, of the right order of magnitude to

be compatible with gauge mediation. Indeed it should be possible to couple our model to

a messenger sector to construct a simple gauge-mediated model along the lines of [3].
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4. Conclusions

We have presented a mechanism by which the ISS model of metastable dynamical SUSY

breaking can be made fully natural. In the original ISS model the required small mass

scale was put in by hand, and in subsequent refinements generated from higher-dimensional

operators, relying on some unknown physics at the UV-completion scale of the theory. Here

we have generated the small mass scale from strong gauge dynamics in an auxiliary sector,

coupled to the ISS model by renormalizable operators which involve an additional singlet.

A parameter λ is required to be moderately small (we have seen that λ ≈ 10−2 is acceptable

in an example).

A possible direction for further work would be to employ this mechanism in a realistic

model of particle physics, involving also messenger and visible sector fields. Furthermore,

it would be interesting to find a stringy realization of the model presented here, e.g. arising

from an intersecting brane model in type IIA or from branes at singularities in type IIB

(see, for instance, [10] for some D-brane constructions of ISS-like models).
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A. The exact superpotential for SQCD coupled to a singlet

Here we derive the exact superpotential of the auxiliary sector as introduced in section 3.2

Consider SU(Nc) SQCD with Nf flavours of massless quarks and antiquarks Q, Q̃, where

Nc > Nf > 1. Let us write down a superpotential which couples the quarks to a singlet

field S:

Wtree = Sλ tr QQ̃ + κS3. (A.1)

At low energies the theory should be described in terms of the gauge-invariant composites

M i
j = QiQ̃j . For λ = κ = 0, their dynamics is governed by the non-perturbative Affleck-

Dine-Seiberg superpotential [7]:

Wnp = a

(

Λ3Nc−Nf

detM

)

1

Nc−Nf

, (A.2)

with some scheme-dependent prefactor a. We will now argue that the full superpotential,

including all quantum corrections, is dictated by symmetry and holomorphy to be

W = Wtree + Wnp. (A.3)

Our line of reasoning is a straightforward variation of the arguments of [8, 9]. An exact

superpotential was already found in [8] for the system under consideration here, but in a

2Note that our notation here deviates slightly from that used in the main text (we omit the primes and

differ by a factor of Λ in the definition of the meson field M).
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range of parameters where M is heavy enough to be integrated out, so that S is the only

relevant low-energy degree of freedom.

At κ = λ = 0, the classical theory is invariant under a large symmetry G:

G = SU(Nf )L × SU(Nf )R × U(1)A × U(1)V × U(1)R × U(1)S . (A.4)

U(1)S acts only on the singlet. The other abelian symmetries are an anomalous axial

U(1)A, a vectorial U(1)V and an anomaly-free U(1)R R-symmetry. The “baryon number”

U(1)V will play no part in the following discussion, since all the fields involved at low

energies are neutral. (In fact, there are even more symmetries, acting on S, which we have

already omitted because they will not be relevant.)

We now promote the couplings κ and λ to classical background chiral superfields, whose

nonzero values break G. Also, the scale Λ of the gauge theory is assigned a charge under

the anomalous U(1)A. To be able to write down the most general invariant superpotential,

we should promote λ to an Nf × Nf matrix, replacing λ tr M → tr(λM). The following

table lists the charges and dimensions of the fields, couplings and of Λ, as well as of the

basic holomorphic SU(Nf )L× SU(Nf )R-invariants that can be constructed from M and λ:

SU(Nf )L SU(Nf )R U(1)A U(1)R U(1)S dimension

S 1 1 0 0 1 1

M Nf Nf 2 2
Nf−Nc

Nf
0 2

κ 1 1 0 2 −3 0

λ Nf Nf −2 2 Nc

Nf
−1 0

Λ 1 1
2Nf

3Nc−Nf
0 0 1

detM 1 1 2Nf 2Nf − 2Nc 0 2Nf

det λ 1 1 −2Nf 2Nc −Nf 0

tr [(λM)n] 1 1 0 2n −n 2n

The full superpotential must be holomorphic in both the couplings and the fields. It

must have dimension 3, transform under U(1)R with charge 2, and be invariant under the

rest of G. The most general such function can be written as

W = S tr λM f(Iα), (A.5)

where f is a holomorphic function of dimensionless G-invariant variables Iα. This ex-

pression makes sense since the number of independent Iα is finite. In fact, the operators

tr [(λM)n] for n > Nf are algebraically dependent on the operators tr [(λM)n] for n ≤ Nf

(which can be seen e.g. from Newton’s identities). The same is also true for det(λM). From

the table above there are therefore Nf + 4 independent SU(Nf )L×SU(Nf )R-invariants,

subject to 3 independent constraints from U(1)A × U(1)R × U(1)S -invariance and dimen-

sionlessness. Hence there are Nf + 1 independent Iα. We may choose them to be

I0 =

(

Λ3Nc−Nf

det M

)

1

Nc−Nf

(S tr λM)−1,

In =
κnS2n

tr [(λM)n]
(n = 1 . . . Nf ).

(A.6)
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At weak coupling, where λi
j → 0, κ → 0 and Λ → 0, the superpotential must asymptote

to (A.3), which means that

f = 1 + I0 + I1. (A.7)

But since all values of the Iα can be obtained in this limit, (A.7) must already be exact,

which proves our assertion.
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